On Riemannian nonsymmetric spaces and flag manifolds

نویسندگان

  • Abdelkader Bouyakoub
  • Elisabeth Remm
چکیده

In this work we study riemannian metrics on flag manifolds adapted to the symmetries of these homogeneous nonsymmetric spaces(. We first introduce the notion of riemannian Γ-symmetric space when Γ is a general abelian finite group, the symmetric case corresponding to Γ = Z2. We describe and study all the riemannian metrics on SO(2n + 1)/SO(r1) × SO(r2) × SO(r3) × SO(2n + 1 − r1 − r2 − r3) for which the symmetries are isometries. We consider also the lorentzian case and give an example of a lorentzian homogeneous space which is not a symmetric space.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Geometry Preserving Kernel over Riemannian Manifolds

Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...

متن کامل

Riemannian Symmetries in Flag Manifolds

Flag manifolds are in general not symmetric spaces. But they are provided with a structure of Z2 -symmetric space. We describe the Riemannian metrics adapted to this structure and some properties of reducibility. The conditions for a metric adapted to the Z2-symmetric structure to be naturally reductive are detailed for the flag manifold SO(5)/SO(2)× SO(2)× SO(1).

متن کامل

On a class of paracontact Riemannian manifold

We classify the paracontact Riemannian manifolds that their Riemannian curvature satisfies in the certain condition and we show that this classification is hold for the special cases semi-symmetric and locally symmetric spaces. Finally we study paracontact Riemannian manifolds satisfying R(X, ξ).S = 0, where S is the Ricci tensor.

متن کامل

On the k-nullity foliations in Finsler geometry

Here, a Finsler manifold $(M,F)$ is considered with corresponding curvature tensor, regarded as $2$-forms on the bundle of non-zero tangent vectors. Certain subspaces of the tangent spaces of $M$ determined by the curvature are introduced and called $k$-nullity foliations of the curvature operator. It is shown that if the dimension of foliation is constant, then the distribution is involutive...

متن کامل

Commutative curvature operators over four-dimensional generalized symmetric spaces

Commutative properties of four-dimensional generalized symmetric pseudo-Riemannian manifolds were considered. Specially, in this paper, we studied Skew-Tsankov and Jacobi-Tsankov conditions in 4-dimensional pseudo-Riemannian generalized symmetric manifolds.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008